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1.  Introduction

An increasing number of utilities are installing metal transmission and distribution poles
due to the many advantages of metal poles over wood poles.  The purpose of this white paper is
to present evidence that the embedded portion of a representative steel pole offers significant
grounding capability.  In fact, the grounding resistance of the embedded portion of a steel pole
can be shown to be lower than standard ground rods under specific conditions.

In this white paper, the Numerical Electromagnetics Code (NEC-4) [1] is used to
compute the grounding resistance of a variety of grounding electrodes.  NEC-4 is a method of
moments [2] code originally designed for the analysis of antennas and scatterers.  NEC-4 can be
used in the computation of ground resistances since it allows for conducting structures over a
finitely conducting ground which may penetrate the ground.  Of particular interest is the
grounding resistance of a representative steel pole such as a typical 40 foot class 3 steel
distribution pole.  The specific characteristics of this steel pole are shown in Figure 1.
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Figure 1.  Forty foot Class 3 Steel Pole

Figure 1. 40 ft class 3 steel pole.

The computational technique for determining ground resistance is first validated using
standard ground rods.  The computed results are compared with the analytical equation for



cylindrical ground rods as given in the IEEE Recommended Practice for Grounding of Industrial
and Commercial Power Systems (ANSI/IEEE Std 142-1982) [3].  As with any ground resistance
calculation, the soil characteristics are of prime importance.  Two soil types are considered for
each ground resistance computation: a relatively low conductivity sandy soil and a relatively
high conductivity clay soil.  Average values for the conductivities of these general soil types are
taken from [3].

Several different scenarios of grounding for the steel pole are considered.  Given that the
steel pole may be treated with below grade protection in the form of a spray-applied
polyurethane or heat shrink tubing, the effect on the ground resistance must be determined.
Thus, the grounding resistance characteristics for the steel pole are determined assuming below
grade protection at 0.305 m (1 ft) intervals.

Also, since “existing electrodes” such as steel reinforcing bars in concrete foundations
and footings are considered to be acceptable grounds, the grounding resistance of an example
reinforced concrete pile is computed for comparison.  The dimensions of the concrete pile are
chosen to be similar to those of the steel pole.

2.  Computational Modeling of the Fall-of-Potential Method

The ground resistance of the various electrodes considered here are computed using
NEC-4 by applying the so-called fall-of-potential method [3].  This technique is commonly used
in field measurements of ground resistance.  As shown in Figure 2, the fall-of-potential method
employs three terminals: the ground electrode under test, a current electrode and a voltage probe.
The current is driven through the ground electrode under test and the potential is measured at
different locations with the voltage probe.  Using NEC-4, the conductor system consisting of the
source, current electrode and ground electrode are included in the model.  The voltage as a
function of position V(x) is determined by integrating the electric field within the soil.

The electrode ground resistance as a function of distance away from the ground electrode
is given by
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The potential V(x) varies rapidly in the vicinity of both the ground electrode and the current
probe.  By placing the current probe far enough away from the ground electrode, the electrode
resistance approaches a near constant value over the midrange distances between ground
electrode and the current probe.  The total spacing between the ground electrode and the current
probe in Figure 2 is designated as s.  The so-called “62% Rule” may be applied where the fall-of-
potential resistance given in (1) should match the theoretical ground resistance at a distance of
0.618s under ideal conditions.

3.  Code Validation

The computational model for the fall-of-potential technique is validated by computing the
grounding resistance of a standard ground rod in sandy soil and clay soil.  The overall resistance
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Figure 2. Fall-in-potential method.

of an installed ground electrode is actually the sum of three components: the resistance of the
electrode conductor, the conductor/soil contact resistance, and the resistance of the soil
surrounding the electrode.  Typically, the total resistance of the electrode conductor and the
conductor/soil contact resistance (being a small fraction of an ohm) is negligible in comparison
to the resistance of the soil.  Thus, the most analytical formulas for the electrode ground
resistance usually account for the resistance of the soil only.  The analytical expression for the
ground resistance of an installed cylindrical ground rod of length L and radius a is [3]
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where  is the conductivity of the soil.
The electrode chosen for the NEC-4 code validation is a ground rod of length 3.05 m (10

ft) and radius 16 mm (5/8 in).  The resistance of this ground rod is given in the ANSI/IEEE Std
142-1982 for different soil types at maximum, minimum and average soil conductivities.  The
average conductivities of sand ( = 1.064 m/m) and clay ( = 24.63 m/m) are used here in
the code validation examples.  The source voltage is assumed to be Vo = 1 volt and the overall
separation distance between the ground rod and the current probe is assumed to be s = 30.5 m
(100 ft).  The current probe and the connecting wires are assumed to be perfectly conducting
while the finite conductivity of the steel rod ( = 7.69x106 /m) is included in the code.  The
resulting fall-of-potential plot is shown in Figure 3.  Note that the potential varies rapidly in the
vicinity of both the ground rod at x = 0 and the current probe at x = s.



Figure 3. Computed variation in the potential between the ground rod and
the current electrode [ L = 3.05 m (10 ft), a = 16 mm (5/8 in)].
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The computed ground rod resistances in sand and clay (using average conductivities for
each soil) are compared to the analytical results in Table 1.  Additionally, the ground resistances
of 8 ft (2.44 m) ground rods of ½ in (13 mm) and 5/8 in (16 mm) diameters are computed in sand
and in clay.  The computed ground resistances are compared to analytically determined values in
Table 2.  From Tables 1 and 2, one finds that the computationally-obtained ground resistances
are in close agreement with the analytically-obtained values.

Ground rod dimensions Soil type V(0.618s) I Rcomputed Ranalytical

L = 3.05 m (10 ft)
a = 8 mm (5/8 in diameter)

sand 0.456 V 1.46 mA 313  310 

L = 3.05 m (10 ft)
a = 8 mm (5/8 in diameter)

clay 0.456 V 33.7 mA 13.5  13.4 

Table 1. Comparison of computed and analytical ground resistances of
3.05 m (10 ft) ground rods with a = 8 mm (5/8 in diameter).

Ground rod dimensions Soil type V(0.618s) I Rcomputed Ranalytical

L = 2.44 m (8 ft)
a = 8 mm (5/8 in diameter)

sand 0.497 V 1.33 mA 374  374 

L = 2.44 m (8 ft)
a = 8 mm (5/8 in diameter)

clay 0.497 V 30.9 mA 16.1  16.2 

L = 2.44 m (8 ft)
a = 6.5 mm (1/2 in diameter)

sand 0.509 V 1.31 mA 389  387 

L = 2.44 m (8 ft)
a = 6.5 mm (1/2 in diameter)

clay 0.509 V 30.4 mA 16.7  16.7 

Table 2. Comparison of computed and analytical ground resistances of 2.44 m (8 ft)
ground rods with a = 8 mm (5/8 in diameter) and a = 6.5 mm (1/2 in diameter).

4.  Steel Pole Grounding Resistance

The same technique used to determine the resistance of the steel ground rods is applied to
the class 3 steel pole of Figure 1.  One limitation of NEC-4 is that the conductors which
penetrate the ground plane cannot be tapered.  Thus, the ground resistances for the steel pole are
computed assuming a straight steel pole of radius equal to the mean value of the tapered pole
below the soil.  This mean radius for the forty foot class 3 steel pole is 0.159m (6.26 in).

In order to model the effect of below grade protection in the form of a spray-on coating
or a heat shrink tubing, the code must be able to account for the insulating layer on the
conductors.  NEC-4 allows for conductors with insulating sleeves but does not allow for these
coated conductors to penetrate the ground plane.  Thus, the exact ground resistance of a steel
pole with below grade protection cannot be computed using NEC-4.  However, one may use
NEC-4 to determine the ground resistance for a bare steel pole of equivalent conductor/soil
surface contact area.  The ground resistance of the coated steel pole (Rcoated) should then be



smaller than the ground resistance of the equivalent bare pole (Rbare) since the bare portion of the
coated pole is located at or below the same span on the bare pole.  Thus, the current in the coated
pole has a larger cross-section of soil through which to flow.  This concept is illustrated in Figure
4 where the depth of the bare portion of the coated pole is designated as db.  The ground
resistance of the equivalent bare pole which penetrates the soil to a depth of db will represent an
upper bound on the grounding resistance of the coated pole such that Rcoated Rbare.  Thus, the
measured value of ground resistance for the coated steel pole will always be lower than the
computed value (the upper bound).  Even though the exact value of the ground resistance for the
coated pole will be unknown, knowing the upper bound on this ground resistance allows for a
definitive comparison of the grounding effectiveness of the coated steel pole and standard
ground rods.  The upper bound on the ground resistance of the class 3 steel pole is computed as
the length of the bare portion is varied from 6 ft (1.83m) down to 1 ft (0.305m) in 1 ft intervals.
The results of these ground resistance computations are shown in Table 3.

db
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Coated
pole
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Rbare

I I
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Figure 4. Illustration of Rbare as the upper limit on Rcoated.

Length of bare portion (db) Soil type V(0.618s) I R

db = 1.83 m (6 ft) sand 0.342 V 1.56 mA 219 
db = 1.83 m (6 ft) clay 0.342 V 36.1 mA 9.5 
db = 1.52 m (5 ft) sand 0.361 V 1.48 mA 244 
db = 1.52 m (5 ft) clay 0.361 V 34.3 mA 10.5 



db = 1.22 m (4 ft) sand 0.381 V 1.39 mA 274 
db = 1.22 m (4 ft) clay 0.381 V 32.1 mA 11.9 
db = 0.914 m (3 ft) sand 0.402 V 1.27 mA 317 
db = 0.914 m (3 ft) clay 0.402 V 29.4 mA 13.7 
db = 0.610 m (2 ft) sand 0.417 V 1.12 mA 372 
db = 0.610 m (2 ft) clay 0.417 V 25.9 mA 16.1 
db = 0.305 m (1 ft) sand 0.425 V 0.903 mA 471 
db = 0.305 m (1 ft) clay 0.425 V 20.9 mA 20.3 

Table 3. Computed ground resistances (upper bounds) of a partially coated
40 foot class 3 steel pole [These computed values will always

be larger than or equal to the actual ground resistance].
5.  Concrete Pile Grounding Resistance

The geometry of the concrete pile represents an inhomogenous ground with the concrete
surrounding the conductors and the soil surrounding the concrete.  NEC-4 requires that the
conductors be located in a homogenous ground to accurately compute the grounding resistance.
However, the electrical characteristics of concrete are quite similar to dry sandy soil. Thus, the
two soils considered here (average conductivity sand and clay) are better conductors than
concrete.  For this reason, the concrete pile conductor system of reinforcing steel located in a
homogenous sand or clay ground of average conductivity yields a computed grounding
resistance which is smaller than the actual grounding resistance of the concrete pile (conductors,
concrete and soil).  The computed ground resistances therefore represent lower bounds of the
actual concrete pile ground resistances.

The geometry of the reinforcing steel of the concrete pile is shown in Figure 5.  The
dimensions of the concrete pile conductors are chosen to closely match those of the steel pole.
The vertical conductors have an overall length of approximately 1.83 m (6 ft) while the radius of
the horizontal circular conductors is 0.159m (6.26 in).  The longer vertical conductor in Figure 5
represents the connection of the down conductor to the concrete pile.  All of the conductors are
assumed to be steel with a diameter of 13 mm (½ in).  The grounding resistance results for the
concrete pile are shown in Table 4.



Figure 5. Geometry of the reinforcing steel of the concrete pile.

Soil type V(0.618s) I R

sand 0.406 V 1.60 mA 254 

clay 0.406 V 36.7 mA 11.1 

Table 4. Computed ground resistances (lower bounds) of the concrete pile shown
in Figure 5  [These computed values will always be smaller than or

equal to the actual ground resistance].

6.  Summary and Conclusion

Comparing the computed ground resistances of the 8 ft ground rods in Table 2 with those
of the coated steel pole in Table 3, one finds that the coated steel pole performs as well as either
the ½ in or 5/8 in diameter ground rods given at least two feet of bare length at the base of the
buried portion of the coated steel pole.  Since the computed grounding resistances of the coated
steel pole represent upper bounds (the computed grounding resistances are always larger than or
equal to the actual grounding resistances), the required bare length of steel pole to be equivalent
to the 8 ft ground rod is actually less than 2 ft.



When the computed ground resistance of the coated steel pole is compared to that of the
concrete pile in Table 4, one finds that the coated steel pole is an equal or better ground for bare
lengths between 4 and 5 ft.  Again, since the computed ground resistances of the coated steel
pole are upper bounds (always larger than the actual grounding resistance) while the concrete
pile ground resistances are lower bounds (always smaller than the actual grounding resistance),
the amount of bare length required on the coated steel pole to make it equivalent to the concrete
pile should actually be significantly smaller than the given range of between 4 and 5 ft.
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